Search results for " Codimension"
showing 10 items of 33 documents
Varieties of algebras with pseudoinvolution and polynomial growth
2017
Let A be an associative algebra with pseudoinvolution (Formula presented.) over an algebraically closed field of characteristic zero and let (Formula presented.) be its sequence of (Formula presented.) -codimensions. We shall prove that such a sequence is polynomially bounded if and only if the variety generated by A does not contain five explicitly described algebras with pseudoinvolution. As a consequence, we shall classify the varieties of algebras with pseudoinvolution of almost polynomial growth, i.e. varieties of exponential growth such that any proper subvariety has polynomial growth and, along the way, we shall give also the classification of their subvarieties. Finally, we shall de…
Group graded algebras and almost polynomial growth
2011
Let F be a field of characteristic 0, G a finite abelian group and A a G-graded algebra. We prove that A generates a variety of G-graded algebras of almost polynomial growth if and only if A has the same graded identities as one of the following algebras: (1) FCp, the group algebra of a cyclic group of order p, where p is a prime number and p||G|; (2) UT2G(F), the algebra of 2×2 upper triangular matrices over F endowed with an elementary G-grading; (3) E, the infinite dimensional Grassmann algebra with trivial G-grading; (4) in case 2||G|, EZ2, the Grassmann algebra with canonical Z2-grading.
Asymptotics for Graded Capelli Polynomials
2014
The finite dimensional simple superalgebras play an important role in the theory of PI-algebras in characteristic zero. The main goal of this paper is to characterize the T 2-ideal of graded identities of any such algebra by considering the growth of the corresponding supervariety. We consider the T 2-ideal Γ M+1,L+1 generated by the graded Capelli polynomials C a p M+1[Y,X] and C a p L+1[Z,X] alternanting on M+1 even variables and L+1 odd variables, respectively. We prove that the graded codimensions of a simple finite dimensional superalgebra are asymptotically equal to the graded codimensions of the T 2-ideal Γ M+1,L+1, for some fixed natural numbers M and L. In particular csupn(Γk2+l2+1…
Varieties with at most quadratic growth
2010
Let V be a variety of non necessarily associative algebras over a field of characteristic zero. The growth of V is determined by the asymptotic behavior of the sequence of codimensions cn(V); n = 1; 2, … and here we study varieties of polynomial growth. Recently, for any real number a, 3 < a < 4, a variety V was constructed satisfying C1n^a < cn(V) < C2n^a; for some constants C1;C2. Motivated by this result here we try to classify all possible growth of varieties V such that cn(V) < Cn^a; with 0 < a < 2, for some constant C. We prove that if 0 < a < 1 then, for n large, cn(V) ≤ 1, whereas if V is a commutative variety and 1 < a < 2, then lim logn cn(V) = 1 o…
Graded algebras with polynomial growth of their codimensions
2015
Abstract Let A be an algebra over a field of characteristic 0 and assume A is graded by a finite group G . We study combinatorial and asymptotic properties of the G -graded polynomial identities of A provided A is of polynomial growth of the sequence of its graded codimensions. Roughly speaking this means that the ideal of graded identities is “very large”. We relate the polynomial growth of the codimensions to the module structure of the multilinear elements in the relatively free G -graded algebra in the variety generated by A . We describe the irreducible modules that can appear in the decomposition, we show that their multiplicities are eventually constant depending on the shape obtaine…
PI-algebras with slow codimension growth
2005
Let $c_n(A),\ n=1,2,\ldots,$ be the sequence of codimensions of an algebra $A$ over a field $F$ of characteristic zero. We classify the algebras $A$ (up to PI-equivalence) in case this sequence is bounded by a linear function. We also show that this property is closely related to the following: if $l_n(A), \ n=1,2,\ldots, $ denotes the sequence of colengths of $A$, counting the number of $S_n$-irreducibles appearing in the $n$-th cocharacter of $A$, then $\lim_{n\to \infty} l_n(A)$ exists and is bounded by $2$.
Polynomial codimension growth and the Specht problem
2017
Abstract We construct a continuous family of algebras over a field of characteristic zero with slow codimension growth bounded by a polynomial of degree 4. This is achieved by building, for any real number α ∈ ( 0 , 1 ) a commutative nonassociative algebra A α whose codimension sequence c n ( A α ) , n = 1 , 2 , … , is polynomially bounded and lim log n c n ( A α ) = 3 + α . As an application we are able to construct a new example of a variety with an infinite basis of identities.
Standard polynomials are characterized by their degree and exponent
2011
Abstract By the Giambruno–Zaicev theorem (Giambruno and Zaicev, 1999) [5] , the exponent exp ( A ) of a p.i. algebra A exists, and is always an integer. In Berele and Regev (2001) [2] it was shown that the exponent exp ( St n ) of the standard polynomial St n of degree n is not smaller than the exponent of any polynomial of degree n. Here it is proved that exp ( St n ) is strictly larger than the exponent of any other polynomial of degree n which is not a multiple of St n .
Polynomial identities on superalgebras: Classifying linear growth
2006
Abstract We classify, up to PI-equivalence, the superalgebras over a field of characteristic zero whose sequence of codimensions is linearly bounded. As a consequence we determine the linear functions describing the graded codimensions of a superalgebra.
Codimension and colength sequences of algebras and growth phenomena
2015
We consider non necessarily associative algebras over a field of characteristic zero and their polynomial identities. Here we describe some of the results obtained in recent years on the sequence of codimensions and the sequence of colengths of an algebra.